

SCREWLine⁴-i WDH-iK4 120.1 – 540.2

Product Presentation

SCREWLine⁴-i, Water source – Main Features

SCREWLine⁴-i is the most **technologically advanced solution** available on the Market with inverter screw compressors and R513A refrigerant

Feltre, 22th December 2020

SCREWLine⁴-i, Water source – Capacity Range

WDH-iK4 serie is available with Excellence version from 340 kW to 1520 kW

SIZES	120.1	160.1	200.1	220.1	240.1	270.1	290.1
Cooling capacity	340	415	520	610	690	760	830
EER	5,13	5,18	5,13	5,15	5,01	5,06	5,02
SEER	8,41	8,46	8,53	8,57	8,55	8,60	8,57
N° compressors	1	1	1	1	1	1	1
N° circuits	1	1	1	1	1	1	1

Range 340 – 830 kW: Unit with 1 refrigeration circuit e 1 inverter compressor

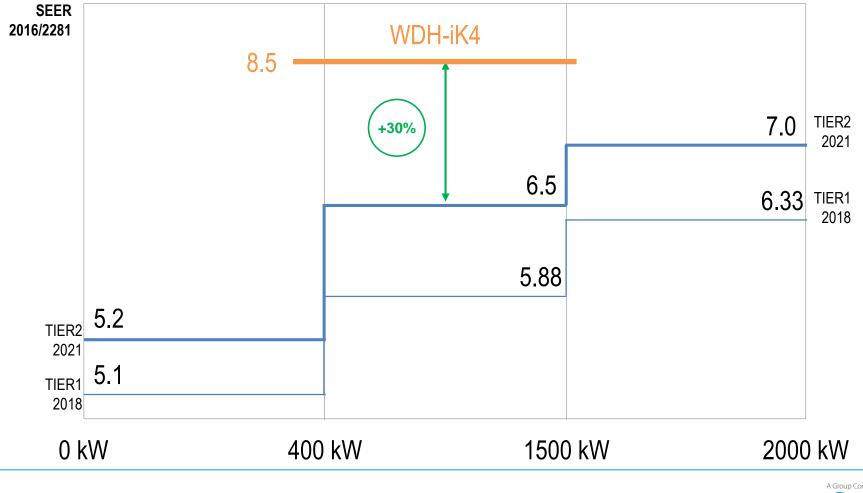
Range 705 – 1520 kW: Unit with 2 refrigeration circuits e 2 inverter compressors

SIZES	250.2	280.2	320.2	360.2	400.2	480.2	540.2
Cooling capacity	705	800	900	1065	1280	1385	1520
EER	5,11	5,15	5,10	5,12	5,14	5,12	5,07
SEER	8,59	8,38	8,47	8,56	8,38	8,51	8,58
N° compressors	2	2	2	2	2	2	2
N° circuits	2	2	2	2	2	2	2

R513A = Solution with low environmental impact

The environmental benefits of R513A compared to R-134a

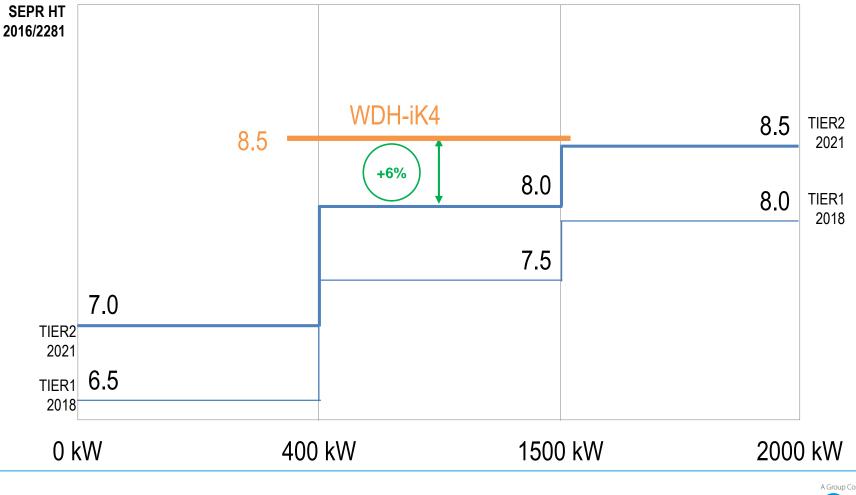
Refrigerant	R-513A	R-134a
Refrigerant type	HFO/HFC	HFC
GWP	631	1430
Dispersion in the atmosphere	6 years	14 years
ASHRAE 34, ISO 817 classification	A1	A1



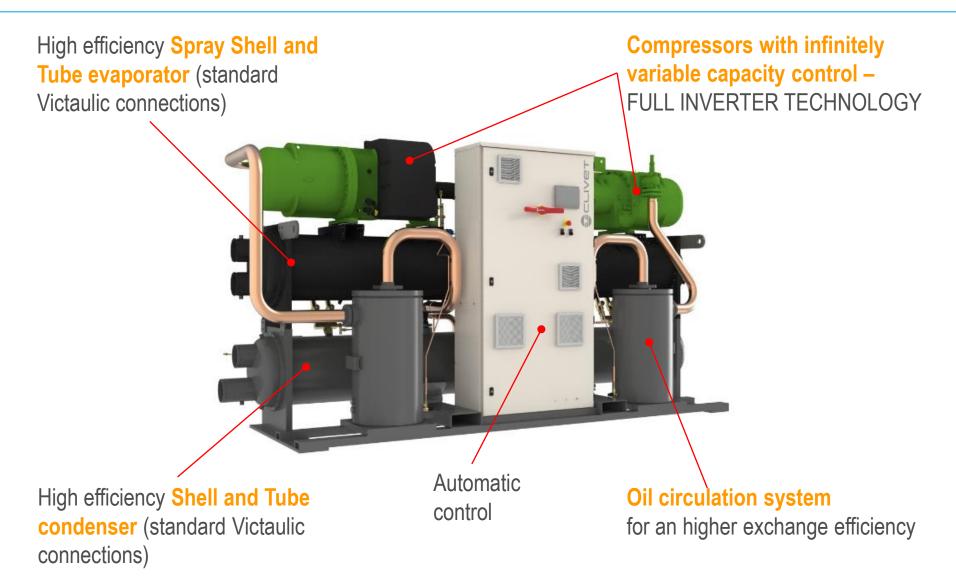
SCREWLine⁴-i, Water source – Seasonal Efficiency (Comfort application)

WDH-iK4 reaches very high seasonal efficiency values (SEER up to 8,60)

It's already compliant to **2021 requirements (Tier 2)**



SCREWLine⁴-i, Water source – Seasonal Efficiency (Industrial application)

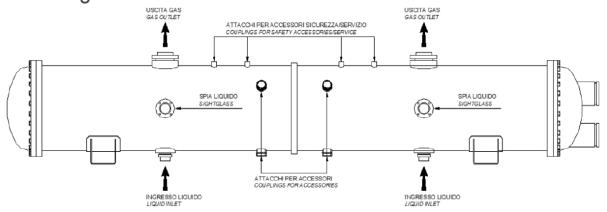

WDH-iK4 reaches very high seasonal efficiency values (SEPR HT up to 8,88)

It's already compliant to **2021 requirements (Tier 2)**

SCREWLine⁴-i, Water source – Technologies for high efficiency

SCREWLine⁴-i is equipped with inverter screw compressor

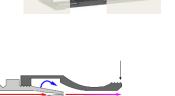
- Perfectly match the cooling load of the plant in any condition
- Minimum turndown of **12%** (2 refrigeration circuits unit), of **24%** (1 refrigeration circuit unit)
- Ensure high efficiency values, reducing operating costs
- Reduce the sound levels at partial loads
- Reduce the water content of the system
- Ensure a null starting current



SCREWLine⁴-i is equipped with Spray shell & tube evaporator

The spray shell and tube evaporator is distinguished by the distribution system that injects the refrigerant in spray format. The surface of the heat exchange tubes, in which water circulates, is completely covered by a film of refrigerant:

- High exchange efficiency
- Low superheat (close to 0 K)
- Less refrigerant charge

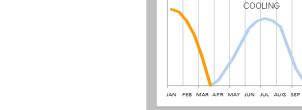


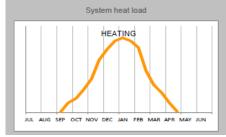
SCREWLine⁴-i is equipped with Oil separators and Oil circulation system:

- Oil separator integrated in the compressor ۰
- Oil separator positioned between compressor and condenser ۰
- Oil recovery system: active in both separators and evaporator via jet-pump

They ensure optimum lubrication of the compressor and prevent oil circulation in the refrigeration circuit.

- Higher exchange efficiency at the evaporator and the condenser
- Improved compressor reliability.




OCO = Cooling only version Cooling capacity: 340 – 1520 kW

OHO = Heating only version Heating capacity: **398 – 1781 kW**

OHI = Operation with water circuit change-over version Cooling capacity: 340 – 1520 kW Heating capacity: 398 – 1781 kW

System heat load

System heat load

COOLING

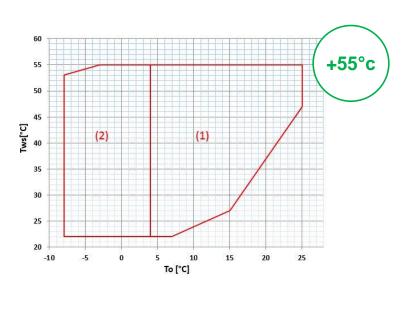
OCT NOV

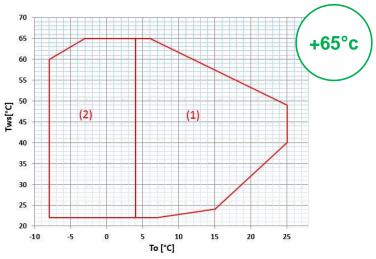
HEATING

SCREWLine⁴-i, Water source – Acoustic configurations

Brine configuration = Low temperature of chilled water

- Chilled water between +4°C and -8°C
- Process application or high dehumidification
- Evaporators are complete with thick closed-cell insulation
- Anti-freeze glycol solution is needed





SCREWLine⁴-i, Water source – Operative range

STD = **Standard** version

SCREWLine⁴-i, Water source – Perfect for Leed

Thanks to specifications and performances as per AHRI is perfect for LEED*

Performance

SIZE			120.1	160.1	200.1	220.1	240.1	270.1	290.1	250.2	280.2	320.2	360.2	400.2	480.2	540.2
Cooling																
Cooling capacity (AHRI 550/590)	(6)	kW	342	413	517	607	687	756	826	701	797	896	1060	1274	1379	1513
Total power input (AHRI 550/590)	(6)	kW	67,0	80,2	101	118	138	150	165	137	154	177	208	249	268	300
COP _R	(6)	-	5,10	5,15	5,11	5,13	4,99	5,04	5,00	5,13	5,17	5,07	5,09	5,12	5,15	5,04
IPLV	(6)	-	7,94	7,74	7,78	7,82	7,83	7,52	7,73	7,62	7,82	7,77	7,68	7,62	7,64	7,74

* Sizes from 120.1 to 320.2 satisfy prerequisites related to "Minimum Energy Performance" and "Fundamental Refrigerant Management". Also matches "Enhanced Refrigerant Management" parameters.

Performances at partial load for each unit are easy to obtain consulting:

Performances

Cooling at part load OCO - OHI - Size 120.1 ÷ 290.1

						Con	denser inl	et tempera	ature					
Size Load	Load		35°C			30°C			25°C			20°C		
		kWf	kWe	EER	kWf	kWe	EER	kWf	kWe	EER	kWf	kWe	EER	
	100	299	86,3	3,46	322	75,2	4,28	340	64,7	5,34	363	54,9	6,61	
	75	232	62,2	3,73	249	54,4	4,58	266	47,1	5,65	279	40,7	6,86	
120.1	50	152	40,3	3,77	164	34,9	4,70	176	30,1	5,85	184	26,1	7,05	
	25	64,8	20,4	3,18	73	16,5	4,45	82	13,1	6,24	88,1	10,6	8,31	
	Min	64,8	20,4	3,18	73,4	16,5	4,45	81,8	13,1	6,24	88,1	10,6	8,31	
	100	362	101	3,58	390	89,2	4,37	416	78,5	5,30	438	68,7	6,38	
	75	295	78,3	3,77	317	69,1	4,59	337	60,8	5,54	353	53,4	6,61	
160.1	50	197	52,2	3,77	212	45,4	4,67	225	39,4	5,71	236	34,3	6,88	
	25	87,9	31,3	2,81	76,7	25,5	3,01	107	20,5	5,22	114	16,5	6,91	
	Min	87,9	31,3	2,81	76,7	25,5	3,01	107	20,5	5,22	114	16,5	6,91	

Documentation

🛇 part load							
Capacity required (kW) 0							
external exchanger air intake (°C) 35							
Part Load							
Cooling capacity (kW)	500	500	500	500	500	500	
Compressor power input (kW)	137	132	128	125	124	124	
Total power input (kW)	152	148	144	144	143	146	
EER	3.28	3.37	3.47	3.47	3.49	3.42	
EER compressor	3.65	3.78	3.90	3.99	4.03	4.03	
Internal exchanger thermal head (°C)	4.58	4.31	3.96	3.55	3.22	3.00	
Water flow-rate (User Side) (I/s)	26.1	27.7	30.2	33.6	37.1	39.8	
Internal exchanger pressure drops (kPa)	31.8	35.5	41.3	43.9	52.4	59.2	

Selection software

SCREWLine⁴-i, Water source – Technical Insights

Functionalities and options available

THE CHOICE OF THE EVAPORATOR IS CONSEQUENT TO THE PRESSURE DROPS

WATER FLOW	N° PASSES	WATER CONNECTION	SCHEME
Ctondard	Turo popo	Left (Std)	STD
Standard	Two pass	Right (option)	
Low	Three pass	Opposed	

THE CHOICE OF THE CONDENSER IS CONSEQUENT TO THE PRESSURE DROPS

WATER FLOW	N° PASSES	WATER CONNECTION	SCHEME			
Standard	Tue poor	Left (Std)	STD			
Standard	Two pass	Right (option)				
Low	Three pass	Opposed				

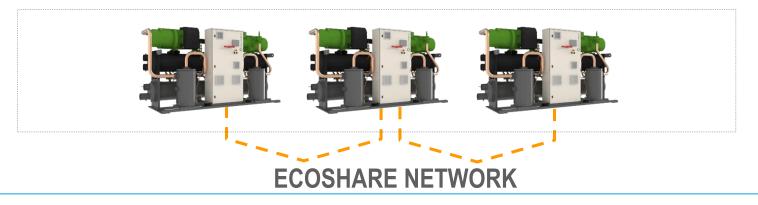
EMC filtering for residential-industrial environment EN 61800-3 cat C2 (optional):

Unit is supplied as standard with **network choke**:

- Solution for industrial process

Unit with **EMC filter**:

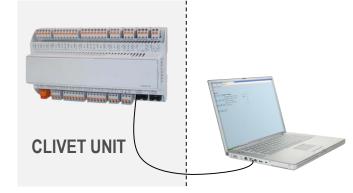
- Solution for commercial / residential application


Modular system with **ECOSHARE** up to 7 units in local network

In comparison with a single unit of equivalent overall capacity it offers many advantages such as:

Increased energy efficiency

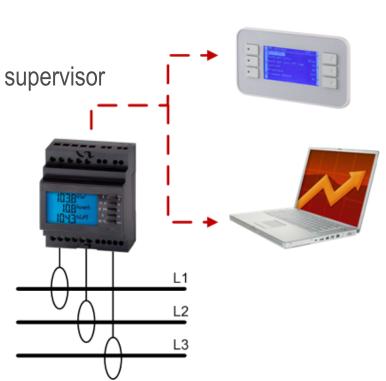
• Higher resiliance


On board display

• Enables to interact easily and immediate with the unit

Connection to the PC through Ethernet port:

 Simplifies after-sales service thanks to the performing diagnostic, updating and for remote assistance tools

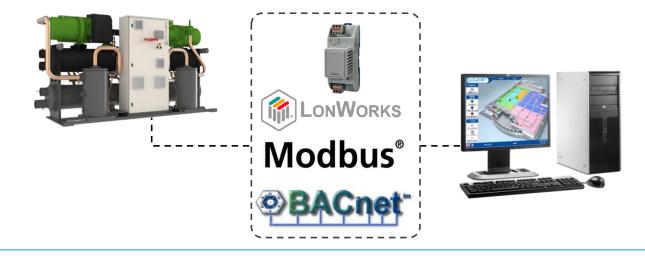


Energy measuring

- It **displays** the main unit's electrical parameters
- It displays them on the unit display
- It trasmits them via the serial connection to the supervisor

The monitored electrical parameters are:

- Voltage/ Current/ Frequency
- Cosfe/ Harmonic components
- Power input/ Energy



The unit can be remotely managed by:

- optional remote control
 - replicates the on board user interface
- the potential free contacts as standard
- the supervision system
 - through different communication protocols

www.clivet.com

A Group Company of